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Understanding factors influencing community resilience to disturbance
is critical for mitigating harm at various scales, including harm from
medication to gut microbiota and harm from human activity to global
biodiversity, yet there is alack of data from large-scale controlled
experiments. Factors expected to boost resilience include prior exposure
to the same disturbance and dispersal from undisturbed patches. Here
we set up anin vitro system to test the effect of disturbance pre-exposure
and dispersal represented by community mixing. We performed a serial
passage experiment on a 23-species bacterial model community, varying
pre-exposure history and dispersal rate between three metacommunity
patches subjected to different levels of disturbance by the antibiotic
streptomycin. As expected, pre-exposure caused evolution of resistance,
which prevented decrease in species abundance. The more abundant the
pre-exposed species had beenin the undisturbed community, the less the
entire community changed. Pre-exposure of the most dominant species
also decreased abundance change in off-target species. In the absence of
pre-exposure, increasing dispersal rates caused increasing spread of the
disturbance across the metacommunity. However, pre-exposure kept the
metacommunity close to the undisturbed state regardless of dispersal rate.
Our findings demonstrate that pre-exposure is animportant modifier of
ecological resilience in ametacommunity setting.

Ecological disturbances are events causing ecosystem change'. They To mitigate unwanted effects of ecological disturbances, itis criti-
vary inmagnitude, frequency and extent, with durations ranging from  cal to develop amechanistic understanding of disturbance response®.
discrete, short-term pulse disturbances to long-term or continuous  In particular, this means understanding the conditions where distur-
pressdisturbances®’. Currently, ecosystems onEarth are experiencing  bances compromise the structure or function, that is, the resilience
unprecedented disturbances owing to human activity. Theseinclude of ecosystems. There exist two frameworks on resilience. The engi-
disturbances associated with global climate change, such as atmos-  neering resilience framework is focused on the return of a system
phericincreasesin carbon dioxide, as well as those caused by using pes-  to its pre-disturbance state, and can be partitioned into withstand-
ticides, herbicides and pharmaceuticals in agriculture and medicine.  ing change during a disturbance (that is, ecological resistance) and
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Fig.1| Design of experiment to test effect of pre-exposure and community
mixing rate on disturbance response in multispecies community. a, The
experimental system consisted of a 23-species bacterial model community
where evolutionary history Hwas modified by pre-exposing each speciesina
monoculture to the disturbance, the antibiotic streptomycin and constructing
communities with no pre-exposed species, one among three abundant species
being pre-exposed or all 23 species being pre-exposed. b, These communities
were each subjected to a regime of three rates of community mixing M (no, low
or high) between three patches experiencing different levels of disturbance
(patch harshness D: no, low or high antibiotic level), thereby constituting
metacommunities. Each unique treatment combination was replicated four
times, making up a total of 180 communities (five pre-exposure treatments,

three rates of community mixing, three disturbance patches and four replicates).
Communities were serially passaged (1% volume) to fresh mediumevery 48 h

for 22 transfers (46 days). Low and high rates of community mixing (modelling
connectivity and migration) were implemented by globally mixing communities
fromall three patches before serial transfer every three or six transfers,
respectively. ¢, To test the study questions, high-throughput sequencing was
used to quantify the community state C at the experimental end point, and clones
were isolated to test for resistance phenotypes in the different treatments.

These data were used to estimate divergence of communities AC from the
no-disturbance, no-mixing baseline (dashed horizontal line as measured at

the experimental end point) within each pre-exposure history as a proxy for
ecological resilience.

post-disturbance recovery’. The ecological resilience framework is
focused on the degree and type of disturbance required to drive a
system into a different state (that is, tipping point, causing a regime
shift)®. In this study, we examine a system experiencing a constant
press disturbance and therefore adopt the latter framework, seeking
toidentify conditions driving or preventing clear shiftsin the system.
Itis critical to understand when a clear shift occurs in the state of an
ecosystem as this can impair ecosystem functioning or even result in
community collapse’”®.

Previous research has identified numerous factors influencing
resilience in species communities, including disturbance intensity, fre-
quency, timing and spatial extent, and the biological level affected”".
Here we focus on two key factors: pre-exposure and dispersal. First,
past disturbances (that is, pre-exposure) can prime communities to
better cope with future disturbances through mechanisms includ-
ing rapid trait evolution, epigenetics and maintenance of trait diver-
sity (via genetic heterogeneity or phenotypic plasticity)’. In this
study, we use rapidly evolving microorganisms, stressing the first

(and potentially last) of these mechanisms. While microorganisms
areknown torapidly evolve resistance to various stressorsinone-and
two-species setups, only afew controlled studies have examined rapid
microbial evolution or its ecological effects in larger communities™ ™.
We recently subjected a multispecies microorganism community to
antibiotic pulse disturbance and found that the intrinsic competitive
fitness and antibiotic susceptibility traits of the species primarily
drove ecological changes despite the emergence of antibiotic resist-
ance mutations'®. However, in line with ecological literature, such
evolutionary trait changes could affect the community response to
future disturbances. To test this in the study at hand, we individually
pre-exposed each speciesin a23-species model bacterial community
to gradually increasing and ultimately high levels of antibiotic distur-
bance, using the aminoglycoside antibiotic streptomycin. This was
followed by phenotyping and whole-genome sequencing thus obtained
populations to identify associated trait evolution. We then constructed
communities with different pre-exposure histories for use in a serial
passage experiment to test for disturbance response (Fig. 1a).
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Dispersal is another critical factor affecting resilience. Commu-
nities are typically nested within patches in a metacommunity with
varying magnitudes of dispersal (connectivity)". Dispersal drives
diversity, increasinglocal patch (alpha) diversity and decreasing meta-
community (beta) diversity'*'®. Dispersal variesinrate and scale, from
small subpopulations to entire communities (community coalescence)
common to microorganisms, with higher dispersal levels expected
to strengthen dispersal effects'>*’. However, not many studies have
investigated the effect of dispersal rate on the disturbance response
of communities. Findings from a recent study suggest that disper-
sal between communities experiencing low-level disturbance can
improve community resilience (for example, restoring lost species),
while dispersal between communities experiencing high-level dis-
turbance can decrease community resilience (for example, driving
extinction of weaker competitors)”. Dispersal from an undisturbed to
adisturbed patch canboost resilience in amanner akin to source-sink
dynamics'®*. By contrast, dispersal froma disturbed to an undisturbed
patch can spread the eco-evolutionary effects of the disturbance to
undisturbed communities?*?*,

While the effects of pre-exposure to disturbance and dispersal on
the community response to disturbance have received some attention,
thereis virtually no experimental evidence on the combined influence
of these two factors. In the absence of pre-exposure, dispersal from
disturbed patches should spread effects of the disturbance across
the metacommunity. A higher dispersal rate should strengthen this
effect. However, by boosting community resilience, pre-exposure to
disturbance should also prevent change of the metacommunity. Higher
dispersal rates should have little bearing on the outcome, potentially
decreasing metacommunity diversity.

Totest the effect of pre-exposure and dispersal rate on ecological
resilience, we performed a full-factorial serial passage experiment for
the 23-species model bacterial community with five pre-exposure histo-
ries: communities containing (1) only naive (ancestral) species, (2-4) a
streptomycin pre-exposed population of one of three abundant species
or (5) disturbance pre-exposed populations of all species (Fig. 1a). We
divided each of the communities into three patches, subjected to no
disturbance, low disturbance level or high disturbance level (different
concentrations of streptomycin). To model the effect of connectivity
level, we subjected the sets of patches to three rates of community
mixing (global connectivity, with entire communities from all three
patches mixed): no, low (every sixth transfer) and high (every third
transfer). The three patches subject to mixing constitute metacom-
munities. We collected ecological and phenotypic data for species
frequencies and antibiotic resistance for communities at the end point
of the serial transfer experiment, allowing us to test the conditions
driving or preventing community change (Fig. 1b).

Results

Pre-exposure to disturbance caused trait evolution

We used a synthetic community of 23 Gram-negative bacterial spe-
ciesisolated from soil, aquatic, plant, animal and human sources, as
described earlier”. Most community members display quasi-stable
co-existence over dozens of serial transfers'®**, As the species have
beenisolated from different environments, the presence of species
interactions such as cross-feeding is uncertain. All the species can be
cultured individually in uniform laboratory conditions, have refer-
ence genomes and have been phenotyped for various traits. These
include the model disturbance for this study, streptomycin, with com-
munity members displaying a wide range of intrinsic susceptibility
levels (Fig. 2a).

Pre-exposure of three abundant community members as mono-
cultures to increasing levels of streptomycin led to increased distur-
banceresistance for two of the species: Aeromonas and Pseudomonas
chrororaphis (Fig. 2a; t-tests on half-maximal inhibitory concentra-
tion (IC,) values of ancestral versus pre-exposed populations with

Bonferroni correction, P < 0.001; Supplementary Table 1). In turn,
the species Citrobacter was already intrinsically resistant before
pre-exposure (Fig. 2a).

Whole-genome sequence datafor pre-exposed populations of the
23 species supported trait evolutionary change (Fig. 2b). The predomi-
nant target of recurrent non-synonymous mutations reaching fixation
orhighallele frequency was the gene rpsL, encoding the streptomycin
binding site in the small subunit of the ribosome, a known target of
high-level streptomycin-resistance mutations**, These were also
observedintwo of the three abundant species usedin the pre-exposure
treatments: Aeromonas and P.chlororaphis. Moreover, recurrent muta-
tions occurred in rsmG previously associated with low-level strepto-
mycin resistance?.

Oneofthe abundant species usedin the pre-exposure treatment,
Citrobacter,lacked mutationsin rpsL, consistent withitsintrinsic resist-
ance and lacking the selection pressure to evolve de novo resistance
(Fig. 2a). Its phenotypic resistance is supported by genomic data, as
it contains four genes (APH(3')-Ib, APH(6)-1d, strA and strB) encoding
aminoglycoside (including streptomycin) inactivating enzymes and
seven genes (acrD, baeR, baeS, cpxA, cpxR, kdpE and tolC) encoding
aminoglycoside efflux pumps®. Nevertheless, the pre-exposed popula-
tion of Citrobacter did contain one low-frequency (7.5%) mutation in
the multidrug efflux encoding gene oprM*°. In addition, there could be
mutations such as structural variants that were not detected because
ofthe use of short-read sequencing data.

Stronger disturbance led to stronger community change

In this study, we examine system change through changes in spe-
cies abundance (relative abundance which is also a proxy for bio-
mass), including alpha (within-community) diversity and beta
(between-community) diversity. We examine alpha diversity through
species richness and Shannon diversity, incorporating both species
richness and evenness. We examine beta diversity, as previously®,
through Kullback-Leibler (KL) divergence, which measures the relative
entropy between two distributions (here, relative abundance vectors
of communities) assuming values between O (perfect match) and .
KL divergence is more sensitive to small compositional changes at
low abundances than Manhattan-based (for example, Bray—-Curtis
dissimilarity) and Euclidean-based measures™.

In the absence of dispersal, across the different pre-exposure
histories, stronger disturbance led to a stronger change incommunity
compositionrelative to the disturbance-free condition (permutational
multivariate analysis of variance (PERMANOVA) model on community
composition excluding community mixing treatments: disturbance
level #=0.42, P=0.01, pairwise comparisons for streptomycin level
all P<0.04; Supplementary Table 2; community composition in the
different treatmentsis visualized in Fig. 3 top rows and Extended Data
Figs.1-3).Inthe presence of streptomycin, most species decreased in
abundance but some species with higher resistance levelincreasedin
abundance (Fig. 3c top row; Extended Data Figs. 3 and 4; linear model
for relationship between intrinsic resistance level and change in fre-
quency in the absence of streptomycin pre-exposure or community
mixing: coefficient of determination R?~ 0.25 and P < 0.001 for both
low and high streptomycin levels). These frequency changes approxi-
mate changes in absolute abundance owing to relatively constant
community biomass levels in our experiment (Extended Data Figs. 5
and 6). Consistent with resistant cells being favoured with strep-
tomycin, in the absence of dispersal, streptomycin level explained
most of the variation (68.0%) in the IC, values of eight clones iso-
lated at random from each experimental end-point community
(Extended DataFig. 7 and Supplementary Tables 3-6).

Streptomycin level also influenced community diversity. Higher
Shannondiversity occurred at low streptomycin level compared tono
streptomycin or high level (least diversity; Extended Data Fig. 8 and
Supplementary Table 7). This was strongly influenced by the dominant
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Fig. 2| Streptomycin susceptibility of experimental species and non-
synonymous mutations in pre-exposed species. a, Streptomycin susceptibility
(IC,) for 23 experimental species. Four distinct clones from the ancestral species
were phenotyped (transparent points) and are shown with the mean (muted

red) and a non-parametric bootstrap for 95% confidence limits of the population
mean (line range) across those replicate clones. Streptomycin IC, of pre-exposed
populations (muted blue) are shown for the three abundant species (axis labels
highlighted with grey) in the community used in the pre-exposure treatment of
the community experiment. For these, 16 clones were randomly phenotyped

Hafnia alvei HAMBI 1279 —
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from each of the four biological replicates for populations of each species
following exposure to increasing concentrations of streptomycin

(64 clonesin total). b, Genes hit by non-synonymous mutations (single
nucleotide polymorphisms or indels) at minimum 5% allele frequency in
pre-exposed populations. Inaddition to the gene, the amino acid change is
indicated in the y axis label. The streptomycin-resistance-associated genes rpsL
and rsmG are highlighted with grey background. Fixed or near-fixed mutations
(allele frequency minimum 0.95) are indicated with a white cross.

species Aeromonas whose population collapsed with streptomy-
cin. This increased evenness at low streptomycin level, while high
streptomycin level expectedly decreased diversity by driving spe-
cies extinctions and competitive dominance of particular resistant
species. This finding is consistent with the intermediate disturbance
hypothesis positing that increasing disturbance levelsinitially increase
diversity by reducing the abundance of competitively dominant spe-
cies®. Nevertheless, the effect only holds for the Aeromonas species,
as its pre-exposure to streptomycin removes the effect (Extended
Data Fig. 8). Similarly, the effect was removed when all species were
pre-exposed to streptomycin, without Shannon diversity reduction
even at high disturbance level. Species richness alone showed a grad-
ual drop at increasing streptomycin level with the extinction of sus-
ceptible species (Extended Data Fig. 9 and Supplementary Table 8).
Similar to its effect on Shannon diversity, in the presence of strep-
tomycin, pre-exposure of all species in the community maintained
species richness.

Pre-exposure decreased impact of disturbance on community
Although streptomycin drove most of the variation in community com-
position, pre-exposing community members to streptomycinitselfalso
had aminor effect on composition (Extended DataFigs.1,2and 10 and
Supplementary Table 9). Since this study focuses on streptomycin as
amodel disturbance, pre-exposure was not treated as a disturbance.
Instead, to control for the effect of pre-exposure, community data were
examined relative to the streptomycin-free composition within each
pre-exposure treatment.

Pre-exposure led to maintaining the abundance of more suscepti-
ble species that otherwise declined (Supplementary Fig.1; analysis of
variance (ANOVA) for linear model on frequency change of focal species
in the absence of community mixing: streptomycin level F, s, =238.4,
P <0.001; absence/presence of pre-exposure F 5, =1,778, P<0.001;
speciesF, 5, =1,195; all interactions P < 0.001; Supplementary Table 10).
Without pre-exposure, the population of only one relatively suscepti-
ble species (Fig. 2a), Aeromonas, collapsed at low streptomycin level.
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Fig. 3 | Effect of disturbance, community mixing and pre-exposure of single
most abundant community member (Aeromonas caviaeHAMBI1972) on
community composition and disturbance resistance. a, Relative abundance

of species at the end point of 46-day serial passage experiment (n = 4 replicates
per unique treatment combination). Subcolumns show data for the three
disturbance levels (no, low or high streptomycin or Sm, level; deepening shades
ofred) intwo key pre-exposure treatments, separated by black vertical lines from
left to right as follows: (1) ancestral populations used for all species (‘All anc.); (2)
apopulation used for the most abundant species in the undisturbed community,
A.caviaeHAMBI1972, that had evolved to be highly resistant to the disturbance
asaresult of pre-exposure (‘Pre-exp.1972’). Amodel bacterial community
consisting of 23 Gram-negative species was used in the experiment. The three
streptomycin disturbance patches (no, low or high level) mixed at low or high
rate have ashared history and can be identified by the replicate number shown
onthexaxis. b, A t-SNE map showing de novo community clustering at the end

point of serial passage experiment. All data points originate from the same ¢-SNE
analysis and have been separated into panels (with same arbitrary axis units) to
illustrate how experimental treatments influence compositional divergence.
The ¢t-SNE map is a two-dimensional projection of a manifold in high-dimensional
space, and only the relationship between the points is meaningful, not point
positioning, with the axes given in arbitrary units. ¢, Frequency of each species
relative to the frequency of the same species in the pre-exposure history-specific
control condition with no antibiotic or community mixing (upper left-hand
white corner) at the end point of serial passage experiment. Data are presented as
mean ts.e.m. (n =4 replicates for each treatment condition). The data pointsin
the control condition (top row with white background) represent variation of
the four control replicates around their mean (zero) and therefore deviate from
zero. The species have been ordered by increasing streptomycin resistance level
(ICso value) of the ancestral species.

Inturn, regardless of pre-exposure, the population of the intrinsically
resistant species Citrobacterincreased inthe presence of streptomycin.

At the community level, pre-exposure of abundant susceptible
species (Aeromonas and P. chlororaphis) caused a decrease in compo-
sitional change at high streptomycin level compared to the absence
of pre-exposure (Fig. 4). This was caused by two factors. First, main-
taining abundance of the focal species itself decreased total commu-
nity change (Fig. 4a and Supplementary Fig. 2). Second, for three out
of four replicate communities for the most abundant and relatively

susceptible Aeromonas species, the non-focal community fraction
was also protected from change (Fig. 4b; Tukey’s post hoc test for
non-focal community: Aeromonas versus P. chlororaphis, P=0.061;
Aeromonasversus Citrobacter, P= 0.042; Supplementary Table11). The
same result was found for compositional (directional) change as for
the magnitude of change, such that only for pre-exposed Aeromonas,
composition in the non-focal community fraction was significantly
altered compared to the absence of pre-exposure (PERMANOVA model
oncommunity compositionin the control condition without mixing or
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Fig. 4| Effect of streptomycin pre-exposure on community resilience.
The y axis shows community resilience quantified as KL divergence of community
composition from the streptomycin-free condition relative to the pre-exposure-
free environment. Therefore, the lower the value, the less community change
occurs at high streptomycin level and the more resilient the community is.

a, Resilience of the entire community at high streptomycin level. b, Resilience

of the non-focal community fraction at high streptomycin level (that is, the
pre-exposed species has been removed). Pre-exposed species have been

ordered from left to right by increasing abundance in the control condition
(antibiotic and pre-exposure-free environment), with the exception of placing
the ‘all pre-exposed’ treatment in front of the listin a (absent from b as all
community members have been pre-exposed). For bothaandb, box plot bars
and circles indicate medians and data points, respectively. The boxes indicate the
interquartile range (25-75th percentile) and whiskers indicate lower and upper
quartiles minus or plus 1.5 times the interquartile range.

streptomycin: Citrobacter pre-exposure = 0.12, P= 0.40; Aeromonas
pre-exposure ’ = 0.56, P=0.02; P.chlororaphis pre-exposure r’ = 0.18,
P=0.30; Supplementary Table 2). This effect includes, for exam-
ple, better maintenance of Hafnia alvei and Kluyvera intermedia
(Fig.3ctopright).

Since Aeromonas occupies up to 80% of the community without
streptomycin, it is likely to strongly influence the resource environ-
ment. Its loss with streptomycin would represent a major additional
disturbance, explaining why its maintenance with pre-exposure also
protects certain other species from change. Consistent with this,
at high streptomycin level without dispersal, the pre-exposure of
Aeromonas led to the second lowest level of total community change
after the pre-exposure of all community members (Supplementary
Fig. 3; ANOVA for linear model on KL divergence of communities
from pre-exposure treatment-specific baseline at experimental end
pointat high streptomycin levelin the absence of community mixing:
pre-exposure treatment F ;s =867, P< 0.001; Tukey’s post hoc test
on all species pre-exposed versus other treatments and Aeromonas
pre-exposed versus other treatments, all comparisons P< 0.001;
Supplementary Table 12).

Dispersal spread patch features to metacommunity

Asexpected, dispersal spread patch featuresinto the three-patch meta-
community (Fig. 3 and Extended Data Figs.1-3). This caused interme-
diate species richness across the metacommunity when compared
to the patches in the absence of dispersal, with Shannon diversity
differences between the patches decreasing for most pre-exposure
treatments from low to high dispersal rates (Extended Data Figs. 8

and 9 and Supplementary Tables 7 and 8). Consistent with this, dispersal
spread streptomycin-resistant cells across the metacommunity from
the high-streptomycin patch, such that the level of variation in ICy,
values in clones isolated from the experimental end point explained
by streptomycin in the individual patches decreased from 68.0% at
no mixing through 26.6% at low mixing rate to 8.5% at high mixing
rate (Extended Data Fig. 7 and Supplementary Tables 3-6). There-
fore, consistent with theory, dispersal decreased metacommunity
(beta) diversity (Supplementary Fig. 3; ANOVA for linear model on KL
divergence of communities from pre-exposure treatment-specific
baseline: community mixing rate F, ;5 = 44.7, P < 0.001; community
mixing rate x streptomycin level F, ;s =24.3, P<0.001; community
mixing rate x pre-exposure treatment Fg ;5= 25.0, P< 0.001; Tukey’s
honestly significant difference for pairwise comparisons on com-
munity mixing rate, no mixing versus low/high mixing rate P < 0.001;
Supplementary Table 13).

Toexaminethe effect of dispersal rate onresilience, we computed
the mean composition of the communities across the three strepto-
mycin levels for each pre-exposure treatment. This represents a null
scenariowhere the dispersal treatment composition is simply the aver-
age of the composition in the three patches. We then tested whether
community composition in the low or high dispersal rate treatments
differed from this null scenario. If the composition significantly dif-
fers from the average composition at a particular dispersal rate, the
dispersal rate disproportionately favours the spread of particular patch
effects across the metacommunity rather than evenly homogenizing
composition across the patches. In the absence of pre-exposure, the
low dispersal rate corresponded to the null scenario whereas the high
dispersal rate differed significantly from the null model and low dis-
persal rate (PERMANOVA model for allancestral community: dispersal
rate = 0.63, P=0.01; pairwise comparisons: null model versus low
P=0.228, null versus high P=0.003, low versus high P=0.003; Sup-
plementary Table 2). This corresponded to a high magnitude of change
from the streptomycin-and dispersal-free baseline community at high
dispersalrate, representing decreased resilience at high compared to
low mixing rate (Fig. 5aleft; ANOVA for linear model on KL divergence
of communities from the streptomycin- and dispersal-free condition:
dispersal rate F,,,=78.2, P< 0.001; Supplementary Table 14). When
comparing against the other dispersal-free patches, the dispersal rate
leads all patches closer to the high streptomycin scenario (Fig. 3b, left).
Thisalso applied to someindividual replicates within the low dispersal
rate communities, seen as heightened variance between replicates
with low dispersal rate, suggesting that the low dispersal rate used
in this study was close to a community tipping point (Fig. 5b; ANOVA
for linear model on effect of streptomycin disturbance and dispersal
on variance between replicate communities: dispersal rate F, 3, = 6.1,
P=0.005; Tukey’s post hoc test for low versus no/high dispersal rate
both P=0.02, no versus high P=1.0; Supplementary Table 15).

Pre-exposure removed dispersal-resilience relationship

Protection of the community through pre-exposure removed the
negative association between dispersal rate and resilience (results
shown for Aeromonas in Fig. 5a and Supplementary Fig. 3). For the
pre-exposure of the dominant Aeromonas caviae species or all spe-
cies, this was seen as only minor community change at low dispersal
rate compared to the baseline (Supplementary Fig. 3) as well as lack
of compositional difference between the low and high dispersal rate
treatments (PERMANOVA model for Aeromonas: dispersal rate = 0.31,
P=0.01; pairwise comparisons: null model versus low P=0.009, null
versus high P=0.003, low versus high P= 0.249; PERMANOVA model for
all pre-exposed: dispersal rate = 0.23, P= 0.02; pairwise comparisons:
null model versus low P =0.192, null versus high P=0.033, low versus
high P=0.194; Supplementary Table 2). Therefore, pre-exposure of
Aeromonasor all species avoided spread of the streptomycin scenario
across the metacommunity at high dispersal rate (for Aeromonas, see
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Fig. 5| Effect of community mixing rate and disturbance pre-exposure on
resilience across metacommunities. a, KL divergence from the streptomycin-
and mixing-free environment at low and high community mixing rate for
communities containing only ancestral species (left) and communities where the
most dominant community member A. caviae HAMBI 1972 had been pre-exposed
to streptomycin (right). Metacommunity refers to the three disturbance level
patches (no, low or high streptomycin level) subject to community mixing. The
12 points overlaid above each box plot include the four replicates from each of
the three streptomycin patches (streptomycin-free, low level and high level)
comprising metacommunities. Each point indicates the compositional distance
(KL divergence on y axis) of an individual community within the metacommunity
from the streptomycin- and mixing-free (that is, no metacommunity) control
condition (mean of four replicates) at the experimental end point. b, Variance
inKL divergence between replicate communities in each treatment at different
community mixing rates (n =180 communities per four replicates = 45 replicate
sets). The 45 points overlaid above each box plot show variation among the four
replicate communities in identical conditions (one of three streptomycin levels
and one of five pre-exposure treatments) for each of the three community mixing
rates. The y axis shows variance in KL divergence quantified asin a, indicating
thelevel of variation among replicates in community change from the baseline
(no streptomycin or community mixing) as a function of community mixing

rate. For both aand b, box plot bars and circles indicate medians and data points,
respectively. The boxes indicate the interquartile range (25-75th percentile)

and whiskers indicate lower and upper quartiles minus or plus 1.5 times the
interquartile range.

Fig.3b, right). For pre-exposed Citrobacter and P.chlororaphis, where
some community change occurred atlow mixing rate (Supplementary
Fig.3), thiswas seen as smaller compositional change from the baseline
at high compared to low dispersal rate (Supplementary Fig. 3), with low
dispersal rate composition being closer to the equal mixing ratio null
model (PERMANOVA model for Citrobacter: community mixing rate
r#=0.31,P=0.01; pairwise comparisons: null model versus low P=1.00,
null versus high P=0.006, low versus high P=0.030; PERMANOVA
model for P. chlororaphis: community mixing rate = 0.34, P=0.02;
pairwise comparisons: nullmodel versus low P =1.00, null versus high
P=0.009, low versus high P=0.030; Supplementary Table 2). There-
fore, pre-exposure of abundant species can strongly influence the
relationship between dispersal and resilience.

Discussion

Here we tested how pre-exposure to disturbance and dispersalinfluence
disturbance response in 23-species metacommunities. As predicted,
pre-exposure caused trait evolution (Fig. 2), decreasing the effect of
the disturbance on the disturbed communities’ (Fig. 4) and thereby
also on the metacommunity (Fig. 5a). Moreover, as expect, dispersal
homogenized species composition and traits across the metacommu-
nity, reducing beta diversity compared to lack of dispersal (Fig. 3a)"*'5",
Since the different patches experienced different levels of disturbance,

this resulted in decreased diversity in the undisturbed patch and
increased diversity in the high-disturbance patch (Extended Data
Figs. 8 and 9 and Supplementary Tables 7 and 8)'°*>**, In the absence
of pre-exposure, higher dispersal rates facilitated spread of disturbance
effects, decreasing metacommunity resilience (compare ref. 21.) but
this was cancelled by pre-exposure of abundant community members
(Fig.5a). Theseresults show that the dispersal-resilience relationship
dependsondispersalrate, and that the relationship is critically altered
by pre-exposure of important community members.

There are several limitations in the current study that warrant
future investigation. First, the mechanism underlying the negative
relationship between dispersal rate and community resilience isuncer-
tain. It could, for instance, be caused by decreased recovery time for
the undisturbed patch between dispersal events at high dispersal rate.
As we only collected end-point data, future studies including sam-
pling over time are needed to test this hypothesis. Second, we found
that pre-exposure of the dominant Aeromonas species to disturbance
altered the abundance of the other community members, protect-
ing the community from change with disturbance, but the reason
for this should be addressed by future studies. A focal species could
alter community-wide species composition through competition for
sharedresources, altering the resource landscape for the other species
or through species interactions such as producing useful or harmful
metabolites® . Stress conditions may also change the nature of spe-
ciesinteractions** ",

Third, our decision to choose focal species for the pre-exposure
treatments based on their abundance could have led to the oversight
of important species. Although in our setup changes in the single
dominant Aeromonas species explained most of the variance in
all experimental outcomes, it has generally been established that
low-abundance species can also be critical for community functioning,
such as cross-feeding networks®. Therefore, in the future, composi-
tional datashould be complemented by functional data (for example,
transcriptomic or metabolomic) to inspect how species loss and evo-
lutionary change alters metabolic pathways.

Fourth, in our study setup, dispersal was modelled by mixing
entire communities. The high magnitude of dispersalis likely to have
influenced the study results. For instance, very low dispersal rates
may lead to species-poor communities with vacant niches?>*°, which
was probably averted in the low dispersal rate treatment in this study
owing to mixing entire communities. Future studies varying both
the magnitude and rate of dispersal are required to better elucidate
these dynamics. An advantage of mixing entire communities is that
our results may have implications for extending existing community
coalescence theory'**?to adynamic temporal setting.

Fifth, we observed astrong capacity of pre-exposure, particularly
for the most abundant and stress-susceptible community members,
todecrease the effect of the disturbance, also cancelling the spread of
disturbance across the metacommunity at high dispersal rate (Fig. 5a).
This demonstrates the potential of rapid evolution toimprove ecologi-
cal resilience, including in a metacommunity setting. Notably, how-
ever, we designed our experimental setup to quantify the maximum
potential of rapid evolution by pre-exposing the species to be highly
stress resistant. Moreover, we pre-exposed the species by exposing
them to increasing levels of stress. The capacity for rapidly evolvable
species to evolve de novo stress resistance is likely to be constrained
during sudden exposure to high-level disturbance and whennested in
amultispecies community®. Ina multispecies community, susceptible
species can rapidly become outcompeted by intrinsically resistant
species and have lower population sizes (potentially decreasing evolv-
ability) compared to when cultured alone, and a community context
has been shown to constrain adaptation®.

One reason for our setup, maximizing the impact of rapid evo-
lution through pre-exposure to a high streptomycin concentration
without a community context, was that we had previously failed to
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observeaclear effect of rapid evolution on community dynamics when
communities consisting of initially unevolved species were exposed
toantibiotic pulses'. Similar to that study, de novo evolution of strep-
tomycin resistance is also likely to have occurred in multiple species
during our study, although we lack the phenotypic and genomic data
to test this explicitly. Owing to these previous findings from the same
community exposed to the same antibiotic for a similar duration, we
considerit unlikely that de novo evolution would be important for the
dynamicsinthis system. Nevertheless, we did find some signals poten-
tially indicating aminor influence of de novo evolution on community
dynamics. For instance, in individual replicate communities, certain
species with low IC,, values (Hafnia, Kluyvera and Paraburkholderia)
increased in frequency at high streptomycin level (Fig. 3c, top row).
Moreover, in one non-pre-exposed replicate community (D, low mixing
rate; Fig. 3¢, middle left), the population of the relatively susceptible
species Aeromonas did not collapse asin all other communities lacking
its pre-exposure. These cases may indicate the influence of de novo
resistance evolution causing evolutionary rescue of these species in
individual communities. Therelatively brief time frame of these stud-
iesisalimitation, since thereis limited time for rare de novo resistance
mutations occurring at different times in the experiment to increase
to high allele frequency and exert community-wide impacts. This
may explain why initial species characteristics seems to drive these
systems, and future studies with longer time frames may show greater
community consequences of de novo evolution.

Our findings are relevant for designing successful control inter-
ventions to improve ecological resilience in natural communities.
When there is absence of pre-exposure or low potential for rapid
evolutionary change, low levels of dispersal between disturbed and
undisturbed patches may facilitate metacommunity resilience. Our
previous study suggests that one-way immigration from an undis-
turbed patch (source) to a disturbed patch is ideal for resilience, but
this may not always be achievable'. However, our findings in this study
suggest that, with high levels of dispersal, there is a risk of spreading
eco-evolutionary effects of disturbances across metacommunities (see
alsoref.21). Nevertheless, when there is high potential for evolutionary
changeinresponseto the disturbance or if pre-exposed populations of
abundanttaxaareintroduced intoacommunity, rapid trait evolution
canbe harnessed to protect from the disturbance atbothlocal (patch)
and global (metacommunity) levels.

Exploiting these features of rapid evolution and dispersal could
be an effective tool for promoting compositional resilience in spe-
cies communities facing environmental change. Nevertheless, this
approachisalsoaccompanied by risks. Reduced within-species diver-
sity’® or pleiotropic effects of resistance mutations*** in an evolved
species may cause community-wide changes in composition (as
observed here) and function or affect the viability and resilience of
the evolved species. Exploiting evolution and connectivity may still
be considered worthwhile, as it is increasingly acknowledged that
control interventions to steer ecology and evolution virtually always
carryassociated costs due to the complexity of biological systems*’. An
optimal control strategy for agiven eco-evolutionary system, including
oneseekingtoimproveresilience, isonethat strikes abalance between
theimportance of achieving a particular target and the importance of
minimizing associated costs.

Methods

Synthetic bacterial community and experimental evolution
Allexperiments used synthetic assemblages of 23 different soil-, water-
and host-associated bacterial species (Supplementary Table 16). Before
the main experiment, all 23 species were experimentally evolved in
two steps to have a maximum range of potential phenotypic and
genotypic diversity derived from streptomycin exposure, thereby
mimicking natural communities containing a legacy of past distur-
bance exposure within genetically heterogeneous populations. Inthe

first high-resistance generation step, monocultures of each species
were grown in sub-minimal inhibitory concentrations (sub-MICs) of
streptomycin (MICs from ref. 25) in protease peptone yeast extract
(PPY) medium for 24-72 h at 28 °C. Monocultures were then serially
transferred (96-deep-well plates; 1,500 pl of PPY; 3% transfer volume,
48 h transfer interval; 28 °C, shaking at 1,000 rpm) with streptomy-
cin concentrations doubling every transfer. The transfer series was
stopped when bacterial optical density (OD) fell below 0.1 OD units
(Supplementary Table 16) and 1 ml of the previous culture was frozen
in30% glycerol. Inthe second diversity generation step, evolved popu-
lations and ancestral forms of each species were revived from -80 °C
and precultured (6 ml of Reasoner’s2A medium, R2A; 28 °C; shaking at
50 rpm; 96 hin total), then mixed in an equal ratio and grown for 48 h
induplicate (96-deep-well plates; 1,500 pl of PPY; 3% transfer volume;
28 °C; shaking at 1,000 rpm) at 12 different streptomycin concentra-
tions (0,1,5,10,20,50,100,200,500,1,000,2,000 and 5,000 pg mi™).
After this round of growth, 100 pl from each streptomycin concentra-
tionwas combined per species. Each evolved population was frozenin
40% glycerol for later experimental use.

Serial passage experiment and measurements

The main experiment was initiated with bacterial mixtures manually
assembled into five pre-exposure histories: only ancestral forms of the
23 species (‘allancestral’), 22 ancestral species plus one experimentally
pre-exposed population from one of three abundant species (Citrobac-
ter koseriHAMBI 1287, A. caviae HAMBI 1972 or P. chlororaphis HAMBI
1977) and experimentally pre-exposed populations of all 23 species
(‘all pre-exposed’). These bacterial mixtures were assembled by first
reviving the ancestral form and the pre-exposed population of each
speciesfrom -80 °Cand preculturing them for 24 hinR2A (6 ml; 25 °C;
50 rpm). One millilitre from each preculture was combined into one
of the five pre-exposure treatments above, briefly mixed by vortex-
ing, and then divided into four parts. These four parts were then used
as the four replicate inoculae per evolutionary history for the main
experiment. The initial species compositions differed slightly between
the pre-exposure treatments (Supplementary Fig. 4). Notably, the
species Brevundimonas bullata HAMBI 262 and Chitinophaga sancti
HAMBI 1988 were not present at detectable levels in the community
stock used to initiate the all pre-exposed treatment. Among these
species, B. bullata HAMBI 262 was detected in the all pre-exposed treat-
ment at the experimental end point (Extended Data Fig. 1). C. sancti
HAMBI 1988 was present in the other treatments at very low levels at
the experimental end point, suggesting that its absence from the all
pre-exposed treatments is unlikely to have influenced the findings in
the study. Originally, the pre-exposure treatment also included the
species Pseudomonas putida HAMBI 6, Agrobacterium tumefaciens
HAMBI 105 and Sphingobacterium spiritivorum HAMBI1896. However,
whole-genome sequence analysis of the pre-exposed populations of
these species used to initiate the serial passage experiment showed
them to be contaminated with other pre-exposed species. They were
therefore omitted from the analysis.

Next, three different streptomycin concentrations (0, 20 or
1,000 pg ml™) representing three levels of disturbance were applied
toeachreplicate per evolutionary history. Finally,acommunity mixing
treatment was nested within replicates of each evolutionary history
to simulate differing amounts of connectivity between streptomycin
‘patches’. In the no-mixing treatment, each streptomycin patch was
serially transferred to the same streptomycin patch. In the low mixing
rate treatment, the three streptomycin patches were thoroughly mixed
every 12 days (six transfers), and this mixture was used to inoculate
all streptomycin patches in the next transfer. The high mixing rate
treatment was the same as the low mixing rate treatment, but mixing
occurred every 6 days (three transfers). The mixing treatment con-
sisted of mixing equal volumes of all three streptomycin levels (0, 20
and 100 pg ml™), resulting in a concentration in the mix of 353 pg mi™.
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The protocol leads to a maximum streptomycin concentration of
~10 pg mI™ (assuming no degradation of streptomycin during previ-
ous culture cycle) after the first transfer following mixing, and negli-
gible amounts thereafter before the next mixing event (for example,
0.3 pg ml™ after second transfer). Such a residual streptomycin level
may have imposed some selection in the streptomycin-free patch in
the first culture cycle after community mixing, as it exceeds the ICy,
value of three low-abundance species in the community (Acinetobacter
lwoffii HAMBI 97, Microvirga lotononidis HAMBI 3237 and Paraburk-
holderia caryophylliHAMBI 2159; Fig. 2a). However, this residual level
should not affect the competitive dynamics of the two dominant spe-
cies C. koseriHAMBI 1287 (high-resistance) and A. caviae HAMBI 1972
(more susceptible), as the growth of the latter is not impaired until
concentrations >16 pg ml™ (Supplementary Fig. 5). Therefore, in the
community mixing treatment, the dominance of either strain should
be driven purely by density-dependent effects based on the intrinsic
orevolved traits of the strains (growth and resistance) in the different
streptomycin patches.

Experimental microcosms were maintained for 23 serial transfers
(96-deep-well plates; 1,500 pl of R2A; 3% transfer volume; 48 h transfer
interval; 25 °C, shaking at 1,000 rpm) in the appropriate streptomycin
concentration. For the low and high mixing rate treatments, 780 pl
from the three streptomycin concentrations were pooled, vortexed
and used as the nextinoculumin the series. Optical density (600 nm)
was measured every 48 h (Extended DataFig. 5). After the 23rd transfer,
analiquot was cryopreserved (40% glycerol) to be revived later for the
dose-response analysis (see below). The remainder of each sample
was destructively harvested to collect material for DNA extraction and
ampliconsequencing.

Sequencing and bioinformatics

Bulk DNA was extracted froma 500 plaliquot of experimental samples
(cryopreserved in 40% glycerol) using the DNeasy 96 Blood & Tissue
Kit (Qiagen) according to the manufacturer’s instructions. The V3-V4
hypervariableregion of the 16S ribosomal RNA gene was amplified from
total community DNA following the standard Illumina 16S metagen-
omic sequencing library preparation protocol (Illumina). Briefly,
the protocol uses the primer pair PCR1_Forward (50 base pairs (bp)):
5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNG-
GCWGCAG-3’, PCR1_Reverse (55 bp): 5’~-GTCTCGTGGGCTCGGAGA-
TGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3' in a limited-
cycle polymerase chain (PCR) reaction, then attaches Nextera XT bar-
codesusingadual-index arrangement. The libraries were then pooled
and sequenced on an Illumina MiSeq using paired 300 bp reads and
MiSeq v.3 reagents at the Finnish Institute of Molecular Medicine.
Library indices were subsequently demultiplexed using bcl2fastq
v.2.2.Paired-end 16S rRNA amplicon reads were then quality trimmed,
merged, filtered and mapped to a reference of the 16S rRNA gene
from the 23 species as previously described*®. Before data analysis,
species counts were normalized by species-specific 16S rRNA gene
copy number.

Genomic DNA from ancestral forms and one replicate of the
evolved populations was extracted using the DNeasy 96 Blood & Tis-
sue Kit (Qiagen) from 24 h overnight cultures grown in PPY medium.
Sequencing of genomic DNA was performed at SeqCenter (https://
www.seqcenter.com/). Sample libraries were prepared using the
Illumina DNA Prep kit and IDT 10 bp UDI indices and sequenced on
an Illumina NextSeq 2000, producing 2 x 151 bp reads. Demultiplex-
ing, quality control and adaptor trimming were performed with bcl-
convert (v.3.9.3).

Toensure that the pre-exposed starting populations were axenic,
reads were competitively mapped against a set of closed reference
genomes using bbsplit (https://sourceforge.net/projects/bbmap/).
This tool simultaneously maps reads against several reference
genomes and identifies the best-matching genome for each read pair.

We excluded all read pairs mapping ambiguously to more than one
reference genome (that is, multiple mapping positions within a con-
tainment threshold of the top-scoring mapping position) but kept
reads that mapped ambiguously within a single genome. Starting
populations with significant contamination from other species were
discarded from further analysis. The purity of the starting populations
was thenverified via PCR of the 16S rRNA gene (primers 27 Fand 1492 R)
and Sanger sequencing, to ensure that only one template was present
inthe sequencing reaction. Sanger sequencing traces of all replicates
of C. koseri 1287, A. caviae 1972 and P. chlororaphis 1977 did not have
multiple peaks at any position, confirming the taxonomic purity from
competitive read mapping.

The competitive mapping process generated a set of read pairs
unique to the expected species from each experimentally evolved
population. Evolved species with <25x coverage of the target genome
(HAMBI 97,105, 262, 1988 and 3237; Supplementary Table 16) were
excluded from downstream analysis. Taxonomically verified read
pairs were mapped to closed reference genomes for each species*’
using BWA-mem v.0.7.17 (ref. 48). Alignment files were preprocessed
with GATK v.4.4 following best practices*. Mutect2 from GATK v.4.4
(ref. 50) was used to call genomic variants using default parameters,
and mutect calls were filtered to exclude spurious calls using Filter-
MutectCalls with the --microbial-mode option. Filtered variants were
annotated using SnpEff v.4.3 (ref. 51). Gene calls were from Prokka
v.1.14.6 (ref. 52). Functional annotations of genes were derived from
the Prokka internal database and the eggNOG 6.0 database® using
eggNOG-mapper v.2.1.10 (ref. 53).

Inference of IC,, values
Using a dose-response curve analysis, half-maximal inhibitory
streptomycin concentrations (ICy,) were estimated for the ances-
tral forms of each bacterial species, the pre-exposed populations
of the three abundant species used in the pre-exposure treatment
(C. koseri HAMBI 1287, A. caviae HAMBI 1972 and P. chlororaphis
HAMBI1977) and for clones randomly picked from the final time point
inthe experiment. Clones of ancestral/evolved forms of each species
and from the experiment end point (day 46) were picked from agar
plates and precultured for 24 hin PPY medium, theninoculated at a
density of 0.01 0Dy, into 200 pl of R2A medium at streptomycin con-
centrationsof0,1,2,4,8,16,32,64,128,256,512,1,024, 2,048, 4,096
and 8,192 pg ml™., Cultures were grown for 48 h at 25 °C in 96-well
plates with shaking (1,000 rpm) and culture density was assessed
at 48 h using OD,,. For the strains used to initate the experiment,
fourreplicate dose-response experiments were performed for each
ancestral species (four clones per species) and 64 for each population
of the three pre-exposed species. For the experimental end-point
communities, eight clones were isolated and tested from each of the
180 communities (1,440 clones in total).

Dose-response curves were fit to the resulting blank-corrected
optical density data from each species or clone following ref. 54 but
using a four-parameter log-logistic function of the form

d-c
1+ exp(b(log (x) — log(e)))

f=c+

where cis the lower asymptote, dis the upper asymptote, bisthe slope
attheinflection pointand eis the IC, value or the antibiotic concentra-
tion where the growth (optical density) is at half the maximum value.
The log-logistic function was fit to the optical density measurements
using the Levenberg-Marquardt nonlinear least-squares algorithm
implemented in minpack.Imv.1.2-4inRv.4.2.2.1C4, values were set to
the maximum tested streptomycin concentration when optical density
was always >0.2 OD,, units and did not decrease across the assayed
streptomycin concentration range in a sigmoid shape with a clearly
defined upper and lower asymptote.
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Downstream data analyses

Alldownstream analyses were performedinthe Rv.4.2.3 environment™.
The t-distributed stochastic neighbour embedding (¢-SNE) map for
Fig. 3b and Extended Data Fig. 2 was created using the Rtsne pack-
age’® with the options perplexity = 20 and theta=0.5. PERMANOVA®’
as implemented in the adonis function in the vegan package’® was
used to test whether the antibiotic level, community mixing rate
or pre-exposure treatment affected community composition. The
method tests the probability that the observed distances between
groups could arise by chance by comparing them with random per-
mutations of the raw data®. The influence of the experimental treat-
ments on IC, and KL divergence values relative to the pre-exposure
history-specific baseline (streptomycin- and mixing-free condition)
was investigated using linear regression models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw sequence data (fastq files) have been deposited in the NCBI
Sequence Read Archive under the accession PRJNA1126612. Pre-
processed data on the growth of pre-exposed species at different
streptomycin concentrations, genomic variants of pre-exposed
species, community size in the main experiment and community
composition in the main experiment are available via Zenodo at
https://doi.org/10.5281/zenod0.14015860.60 (ref. 60).

Code availability

All code needed to reproduce the downstream analyses and figures
areavailableviaZenodo at https://doi.org/10.5281/zenod0.14015860
(ref. 60).
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Extended Data Fig. 1| Effect of disturbance, community mixing and pre-
exposure on community composition. Relative abundance of species
(normalized by species-specific 16S rRNA gene copy number) at the end-point (Sm) disturbance patches (no, low, or high level) mixed at low or high rate (rows)
of 46-day serial passage experiment (N=4 replicates per unique treatment
combination). Subcolumns show data for the five pre-exposure treatments from x-axis. For instance, replicates D for each streptomycin level at low mixing rate
left to right as follows: (1) ancestral strains used for all species (‘Allanc.); (2-4) a in the first evolutionary treatment (‘All ancestral’; three middle rows on the left)
population used for one of three abundant species that had been pre-exposed represent three patches that were mixed regularly and therefore resemble each
to the disturbance (‘Pre-exp.; HAMBI Culture Collection code indicated in
column label: Citrobacter koseri HAMBI 1287, Aeromonas caviae HAMBI 1972,

and Pseudomonas chlororaphis HAMBI1977); and (5) pre-exposed populations
used for all species. Within each pre-exposure treatment, the three streptomycin

have ashared history and can be identified by the replicate number shown on the

other more than the other replicates in the same antibiotic level.
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Extended Data Fig. 2| A t-SNE map showing de novo community clustering at (‘Allanc.), a pre-exposed (‘Pre-exp.’) population for one of three abundant
the end-point of serial propagation experiment. The experiment consisted of species (Citrobacter koseriHAMBI 1287, Aeromonas caviaeHAMBI 1972, and
three patches exposed to no or two increasing levels of the model disturbance Pseudomonas chlororaphis HAMBI1977), and acommunity with pre-exposed
streptomycin (‘Sm’; colors), exposed to no or two increasing levels of community populations of all community members. All data points originate from the same
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(columns), with four replicate communities (shapes) for each unique treatment units) only for the sake of visual clarity of the effects of experimental treatments
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consisted of no pre-exposure for any of the 23 species in the community
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for the five pre-exposure treatments from left to right as follows: (1) ancestral
populations used for all species (‘All anc.); (2-4) a population used for one of
three abundant species that had been pre-exposed (‘Pre-exp.) to the disturbance
(HAMBI Culture Collection code indicated in column label: Citrobacter koseri
HAMBI1287, Aeromonas caviae HAMBI 1972, and Pseudomonas chlororaphis
HAMBI1977); and (5) pre-exposed populations used for all species. Rows show
datafor the three streptomycin disturbance conditions (no, low, and high level)
nested within each of three community mixing rates (no, low, or high rate).
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Extended DataFig. 5| Community biomass (optical density, OD, at 600 nm
wavelength) for each individual population (V=180) over time during 46-day
serial propagation community experiment. Grey bars indicate missing data
owing to technical failure. The columns show the three community mixing

and streptomycin (model disturbance) treatments, and the rows show the five

pre-exposure treatments. The codes in the pre-exposed treatments refer to the
University of Helsinki HAMBI culture collection codes of the following species:
Citrobacter koseri HAMBI 1287, Aeromonas caviae HAMBI 1972, and Pseudomonas
chlororaphis HAMBI1977. The x-axis indicates time in days, and the y-axis
indicates the experimental replicate in question.
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community species at the experimental end-point (V=180 communities x 23 determination (R?) and P-value of alinear regression fit to the dataare indicated
species). The x-axis shows the absolute abundance of the species, such that the within the figure.
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Extended Data Fig. 7 | Effect of disturbance, community mixing and pre-
exposure on disturbance resistance. Half maximal inhibitory concentrations
(IC4) for the model disturbance streptomycin are indicated for eight clones
isolated from each population at the experimental end-point (mean with
bootstrapped 95 % confidence intervals). The datais considered to represent
the IC,, values of dominant community members as the species identity of the
clones was not determined. The pre-exposure treatments (columns) consisted
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of no pre-exposure for any of the 23 species in the community (‘All ancestral’),
apre-exposed population for one of three abundant species (Citrobacter koseri
HAMBI 1287, Aeromonas caviae HAMBI 1972, and Pseudomonas chlororaphis
HAMBI1977), and acommunity with pre-exposed populations of all community
members. Within each pre-exposure treatment, the three antibiotic disturbance
patches mixed at low or high rate (rows) have ashared history and can be
identified by the replicate letter code in the x-axis.
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Extended Data Fig. 8| Shannon diversity of communities at end-point of serial
propagation experiment (N=180). The datais depicted as Shannon diversity for
three patches with different disturbance regimes (no, low or high streptomycin
level) at no, low or high rate of community mixing (rows) between the three
patches (N=4replicates per unique treatment combination). Columns show data
for the five pre-exposure treatments as follows: (1) ancestral strains used for all
species; (2-4) apopulation used for one of three abundant species that had been
pre-exposed to the disturbance (HAMBI Culture Collection code indicated in
column label: Citrobacter koseri HAMBI 1287, Aeromonas caviae HAMBI 1972, and
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Pseudomonas chlororaphis HAMBI1977); and (5) pre-exposed populations used
for all species in the community. A model bacterial community consisting of

23 gram-negative species was employed. Box plot bars and shapesindicate
medians and data points, respectively. The boxes indicate the interquartile range
(25-75th percentile) and whiskers indicate lower and upper quartiles minus or
plus1.5times theinterquartile range. Within each pre-exposure treatment, the
three antibiotic perturbation patches mixed at low or high rate have a shared
history and can be identified by the replicate number indicated by shape.
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species; (2-4) apopulation used for one of three abundant species that had been three antibiotic perturbation patches mixed at low or high rate have a shared
pre-exposed to the disturbance (HAMBI Culture Collection code indicated in history and can be identified by the replicate number indicated by shape.
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Extended Data Fig. 10 | A t-SNE map showing de novo community clustering
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exposure treatments in the absence of streptomycin or community mixing
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23 species in the community (‘All ancestral’), a pre-exposed population for one
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