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Recent advances in understanding the ecology of marine systems have been greatly facilitated by the
growing availability of metagenomic data, which provide information on the identity, diversity and
functional potential of the microbial community in a particular place and time. Here we present a dataset
comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the
Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large
geographic transects at multiple depths per station. The second set represents two years of time-series
data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station
ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria,
archaea, eukaryotes and viruses. The data’s utility is strengthened by the availability of extensive physical,
chemical, and biological measurements associated with each sample. We expect that these metagenomes
will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial
ecosystems.
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Background & Summary
Microbial communities are key drivers of marine biogeochemistry. Our understanding of the incredible
complexity and diversity of natural microbial populations has been greatly enhanced by the advent of
cultivation-independent techniques for sequencing DNA directly from an environmental sample. Despite
progress in describing the complexity of these natural systems, many gaps remain in our understanding
of the distribution of genes and organisms in the oceans as well as the selective forces that structure
community composition and distribution across space and time.

While previous large-scale marine sequencing efforts such as the Global Ocean Survey1,2 and Tara
Oceans3 expeditions have greatly expanded our understanding of ocean microbiomes, these ecosystems
remain vastly undersampled. The oceans present many challenges for sampling, including both their
dynamic nature–e.g. weather, turbulence, movements of water masses, and mixing–as well as their
remoteness. Further, understanding the forces that shape these communities requires detailed physical
and chemical measurements associated with individual samples to provide information on the selective
pressures that might play a role.

Here we present whole community metagenomic data from 610 samples collected in the Atlantic and
Pacific Oceans. These data represent snapshots of microbial communities sampled across space and time,
and are associated with physical and chemical measurements which are of value in addressing integrative
research questions. The first set of metagenomes, collected under the auspices of the bioGEOTRACES
component of the international GEOTRACES program4, comprises 480 samples collected in 2010-2011
(Data Citation 1). These samples come from 91 stations visited over four major cruise transects, with 2-10
depths (median 5) sampled at each station (Fig. 1; Table 1). An extensive suite of physical and chemical
measurements, comprising over 147 unique data types including salinity, oxygen, temperature, nutrients,
and detailed trace metal concentrations4, are available for these samples.

The second set of metagenomes contains time series data collected at two long-term ocean study sites:
Station ALOHA in the North Pacific Subtropical Gyre, sampled as part of the Hawai’i Ocean Time-series
(HOT) program5, and the Bermuda-Atlantic Time-series Study (BATS) Station6 in the Sargasso Sea (Data
Citation 2). Water samples were collected every month for two years (2003-2004) at both locations, and
we sequenced libraries from 3 depths per month (between 1-180 m), representing surface water, the deep
chlorophyll maximum, and the bottom of the euphotic zone (Fig. 2; Table 2). Two additional samples
collected from each site in 2009 are also included (Table 3 (available online only)). This temporal
sampling scheme provides opportunities to compare and contrast variations within and between these
two oligotrophic ocean regimes across seasonal, inter-annual and intra-annual time scales. Station
ALOHA, for example, remains stably stratified throughout much of the summer7, and is often considered
to be a N-limited ecosystem8,9; BATS, on the other hand, is subject to deep winter mixing events and is
generally considered to be a P-limited system6. Both HOT and BATS metagenomes are associated with
concurrent measurements of numerous other parameters, including physical characterization (e.g., light,
temperature, salinity), nutrient concentrations, biological process rate measurements, and in situ cell
concentrations5,6.

The complete dataset contains over 5 terabases (in 1.67 × 1010 paired-end reads) of raw sequence data
(Table 4) (Data Citation 1 and Data Citation 2). In addition to the paired-end reads, we also include a set
of assembled contigs from each metagenome library (Data Citation 3 for GEOTRACES and Data Citation
4 for HOT and BATS). As these metagenomes represent the microbial community in whole water
samples, sequences from bacteria (39% of reads), archaea (4%), eukaryotes (1%) and viruses (2%) are
present in roughly the same proportions observed in other marine datasets10. Future improvements in
reference databases will likely continue to reduce the number of unidentified reads and refine read
recruitment.

We anticipate that these data will be useful for addressing a wide variety of research questions and
generating new hypotheses across a broad range of disciplines including, but not limited to, microbial
ecology, population genetics, evolution, and oceanography. In particular, the physical, chemical, and
biological measurements associated with these samples enable studies of the relationships between
microbial community structure, functional potential, biogeochemical cycles, and specific environmental
variables.

Methods
Whole water samples were collected onto 0.2 μm filters and preserved using previously described
protocols for qPCR sampling11–14. Briefly, water was transferred from the appropriate Niskin bottle into a
clean 500 mL amber bottle which had been washed three times with seawater from the same Niskin
bottle. Replicate filters were prepared from each water sample by passing 100 mL of seawater through a
25mm diameter, 0.2 μm pore size polycarbonate filter under vacuum (9 in Hg maximum pressure).
Filters were then chased with 3 mL of sterile preservation solution (10 mM Tris, pH 8.0; 100 mM EDTA;
0.5 M NaCl) and then immediately transferred to cryovials and stored at -80 °C. All glassware and
collection bottles were cleaned in 10% bleach followed by extensive rinsing with 18 mΩ water (Millipore
Milli-Q).

Total community DNA was extracted using a phenol/chloroform-based extraction method15 that was
slightly modified for these samples. Lysing Matrix E beads (MP Biomedicals), 400 ul Phenol:Chloroform:
IAA (25:24:1) and 400 ul 2x TENS buffer (100 mM Tris-HCL pH 8.0, 40 mM EDTA, 200 mM NaCl, 2%
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SDS for 2x buffer) were added to a microcentrifuge tube containing the filter and then vigorously agitated
using a beadbeater for 40 seconds. After spinning at 19,000 xg for 5 minutes, the aqueous phase was
transferred into a Phase Lock Gel tube (5 Prime), mixed with an equal volume of chloroform, and then
spun at ~27,000 x g for 5 minutes. The supernatant was removed and mixed with an equal volume of
AMPure XP beads (Beckman Coulter), and incubated at room temperature for 10 minutes. Beads were
washed twice with 75% ethanol, dried, and resuspended in 20 uL ultrapure glass distilled water
(Teknova). Total DNA yield was quantified using the PicoGreen assay (ThermoFisher) with yields
ranging from ~10-2600 ng total DNA.

Sequencing libraries were prepared and sequenced by the MIT BioMicro Center. Libraries were
constructed using the NextEra XT kit (Illumina) on an automated Tecan Freedom EVO robotics
platform, starting from 1ng of input DNA. Relevant adapter sequences for downstream quality trimming
are 5’-CTGTCTCTTATACACATCTCCGAGCCCACGAGAC-3’ and 5’-CTGTCTCTTATACACATC
TGACGCTGCCGACGA-3’. Target library insert length was ~250 nt. The resulting libraries were
sequenced using the Illumina NextSeq platform to produce 150+150 nt paired reads. Sixteen
metagenomes were multiplexed on each lane, and a median total of ~25 million raw paired-end reads
was obtained for each sample (range: ~2.6–323 million, due to variations in library loading).

a

b

Figure 1. GEOTRACES metagenomic sampling locations. (a) Global map indicating the location of each

sampling station where metagenomes were collected on the indicated cruise. Sample locations are shown in

relation to sites sampled during two other large-scale marine metagenome sampling projects, the GOS and

TARA datasets1–3 for context. (b) Depth distribution of metagenome samples along each of the four

GEOTRACES cruises. Transect distances are calculated relative to the first station sampled in the indicated

orientation. The depth distribution of samples collected below 250 m are not shown to scale for clarity (ranging

from 281–5601 m; see Table 3 (available online only)).
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To characterize the overall taxonomic content of the metagenomes (see Background & Summary), low
quality regions of sequencing data and Illumina adapter sequences were first removed using
Trimmomatic (V0.36)16. The trimmed reads were then assigned taxonomy using Kaiju (V1.5.0)17 in
MEM mode with the SEG low complexity filter enabled. Kaiju classification employed a database
containing the NCBI nr database (consisting of 103 million bacterial, archaeal viral, fungal, and microbial
eukaryotic protein sequences; accessed 2017-05-16)18, the Moore Foundation Marine Microbial

Geotraces section ID Location/track Sampling dates # Stations # Depths per station # Samples Available ancillary data fields Ancillary data categories

GA02 North to South Atlantic May 2010–March 2011 32 2–6 127 ≥ 39 Physical, Chemical (nutrients, trace metals)

GA03 North Atlantic October 2010–December 2011 15 6-10 114 ≥ 90 Physical, Chemical (nutrients, trace metals)

GA10 South Atlantic, 40 ºS October 2010–November 2010 9 6 54 ≥ 85 Physical, Chemical (nutrients, trace metals)

GP13 South Pacific Ocean May 2011–June 2011 35 2-8 185 ≥ 16 Physical, Chemical (nutrients, trace metals)

Table 1. Summary of GEOTRACES cruise metagenome samples.

Minimum Mean Median Maximum

Paired-end reads sequenced 2,621,276 27,234,974 25,105,392 323,810,664

Total bases sequenced 7.86 × 108 8.17 × 109 7.53 × 109 9.71 × 1010

Table 4. Per-library summary statistics of the metagenome datasets.

Time series Location Latitude, longitude Cruise
numbers

Dates sampled # Depths per
time point

# Samples Available ancillary
data fields

Ancillary data categories

BATS Sargasso Sea 31º 40’ N, 64º 10’ W 173-195 February 2003 - December 2004 3 60 ≥ 27 Physical, Chemical, Biological

HOT N. Pacific gyre, Station ALOHA 22º 45’ N, 158º W 144-166 January 2003 - December 2004 3 66 ≥ 80 Physical, Chemical, Biological

Table 2. Summary of time series metagenome samples.
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Figure 2. Time-series metagenome sampling. Black dots indicate the time and depth of each sample

sequenced from Station ALOHA (Hawai’i Ocean Time-Series; a, b) and the Bermuda-Atlantic Time Series

station (BATS; c, d). Sampling scheme is depicted in the context of total bacterial counts (a, c) and chlorophyll

abundance (b, d) data from HOT22 and BATS6. The middle depth samples were chosen to track the deep

chlorophyll maximum.
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Eukaryote Transcriptome Sequencing Project dataset19, and 729 marine single cell genomes20. Figures
were generated using Ocean Data View (V4.7.10; http://odv.awi.de) and R (V3.3.2; https://www.R-
project.org), with the assistance of a number of R-based tools (tidyverse: https://CRAN.R-project.org/
package=tidyverse; sp: https://CRAN.R-project.org/package=sp; geosphere: https://CRAN.R-project.org/
package=geosphere; patchwork: https://github.com/thomasp85/patchwork; ggworldmap: https://github.
com/thackl/ggworldmap).

Metagenome assemblies of each library were generated using metaSPAdes21 (v3.9.0 and v3.10.1).
Paired-end reads were first quality trimmed with Trimmomatic as above, and then used as input for the
metaSPAdes algorithm (with the default --meta settings). Assembled contigs shorter than 200bp were
discarded.

Code availability
No custom code was used to generate or process these data. Software versions and any relevant variables
and parameters employed are as follows:

Trimmomatic (V0.36): -phred33 ILLUMINACLIP:NexteraPE-PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:10:20 MINLEN:75
Kaiju (V1.5.0): -a mem -x
SPAdes (V3.9.0): --meta
SPAdes (V3.10.1): --meta

Data Records
The raw Illumina sequencing reads and sets of assembled contigs for all metagenomes are available from
the NCBI Sequence Read Archive (Data Citations 1–4). Accession numbers, sample date/location, cruise
information, and library size for each metagenome can be found in Table 3 (available online only).

Technical Validation
To confirm the reliability of the automated library preparation steps and ensure that sample cross-
contamination was minimized, we randomly included blank buffer samples among our samples and
verified that these did not yield successful libraries. Prior to sequencing, the quality of the Illumina
libraries was assessed on a Fragment Analyzer (Advanced Analytical) to ensure that the median insert
size and overall distribution was in the expected range (peak fragment length ~1200 bp, range 300-3000
bp), with a total yield >1 ng; libraries which did not meet these criteria were reprepared. Whenever
possible, libraries with relatively low sequencing coverage (o1 × 107 paired-end reads) were subjected to
additional rounds of sequencing. Sequencing quality (as assessed by per-base average sequence quality
scores, quality over the length of the read, kmer overrepresentation, etc) was monitored by the MIT
BioMicro Center’s automated sequencing analysis pipelines, and libraries were resequenced if necessary.

Usage Notes
All metagenomes are associated with standardized GEOTRACES, HOT, and BATS bottle identification
numbers to enable cross-referencing with the relevant databases of physical, chemical, and biological
measurements (Table 3 (available online only)). GEOTRACES data can be accessed from the British
Oceanographic Data Centre (https://www.bodc.ac.uk/geotraces/). HOT data can be accessed from http://
hahana.soest.hawaii.edu/hot/hot-dogs/index.html, and BATS data from http://bats.bios.edu/. GEO-
TRACES data are periodically updated, and users are encouraged to access the most recent data release.
Note that each individual metagenome may not have associated measurements for all possible
parameters. Access to data from all of these sources is subject to their respective data use policies.

The assembled contigs for each metagenome (Data Citations 3 and Data Citations 4) are deposited in
the NCBI Sequence Read Archive as analysis objects with accession numbers as listed in Table 3
(available online only). Assemblies are also available from the iMicrobe database: Geotraces samples at
https://www.imicrobe.us/#/projects/277; HOT samples at https://www.imicrobe.us/#/projects/271; and
BATS samples at https://www.imicrobe.us/#/projects/276.

Some use cases for the metagenomes could benefit from overlapping the paired-end data to create
longer reads for downstream analysis. In our experience, on average 51% of paired reads overlap. We also
note that these reads and assembled contigs may contain a small amount of contamination arising from
the sampling, library preparation, and/or sequencing steps. While we worked to minimize this as much as
possible, note that the data described here have not been pre-screened.
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